High efficiency water oxidation using NiAlFe-layered double hydroxides

Document Type : Original Article

Authors

1 Department of Chemistry, Payame Noor University, P.O. Box 19395‑3697, Tehran, Iran

2 Inorganic Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran

10.22049/cic.2024.29261.1034

Abstract

We report that ternary nickel-alumina-iron Layered Double Hydroxide (NiAlFe-LDH) is a highly active and stable oxygen evolution catalyst at neutral solutions. The LDHs were prepared using the co-precipitation method and were characterized by a field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD). According to powder X-ray diffraction and field emission scanning electron microscopy, NiAlFe-LDH exhibit a nanosized plate-like morphology with a basal space (d003) of 7.64 °A. Then amount of Al3+ at NiAlFe-LDH optimizes and the electrocatalytic activities of ternary-component were studied toward water oxidation in neutral solutions. The result compared with binary NiFe-LDH and NiAl-LDH. The obtained results show that the electrocatalytic activity of the ternary-component NiAlFe-LDH is much better than that of the binary-component NiFe-LDH and NiAl-LDH. The high electrocatalytic activity of ternary-component LDH may be attributed to the co-existence of Al and Fe active sites.

Keywords


[1] Omer, A.M.; J. Renew. Sustain. Energy. 2009, 5
[2] Wang, G.; Chang, J.; Tang, W.; Xie, W.; Ang, Y.S.; J. Phys. D Appl. Phys. 2022, 5, 293002.
[3] Quang, N.D.; Van, P.C.; Majumder, S.; Jeong, J.-R.; Kim, D.; Kim, C.; J. Colloid Interface Sci. 2022, 616,749
[4] Kubendhiran, S.; Chung, R.-J.; Yougbaré, S.; Lin, L.-Y.; Wu, Y.-F.; Int. J. Hydrogen Energy. 2023, 48, 101.
[5] Nai, J.; Yin, H.; You, T.; Zheng, L.; Zhang, J.; Wang, P.; Jin, Z.; Tian, Y.; Liu, J.; Tang, Z.; Adv. Energy Mater. 2015, 5, 1401880.
[6] Tang, D.; Han, Y.; Ji, W.; Qiao, S.; Zhou, X.; Liu, R.; Han, X.; Huang, H.; Liu, Y.; Kang, Z.; Dalton Trans. 2014, 43, 15119.
[7] Ping, J.; Wang, Y.; Lu, Q.; Chen, B.; Chen, J.; Huang, Y.; Ma, Q.; Tan, C.; Yang, J.; Cao, X.; Adv. Mater. 2016, 28, 764.
[8] Wang, Q.; O’Hare, D.; Chem. Rev. 2012, 112, 4124.
[9] Guo, X.; Zhang, F.; Evans, D.G.; Duan, X.; ChemComm. 2010, 46, 5197.
[10] Fan, G.; Li, F.; Evans, D.G.; Duan, X.; Chem. Soc. Rev. 2014, 43, 7040.
[11] Alcantara, A.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E.; J. Mater. Chem. 2010, 42, 9495.
[12] Nayak, S.; Mohapatra, L.; Parida, K.; J. Mater. Chem. 2015, 3, 18622.
[13] Song, J.; Leng, M.; Fu, X.; Liu, J.; J. Alloys Compd. 2012, 543, 142.
[14] Mahjoubi, F.Z.; Khalidi, A.; Abdennouri, M.; Barka, N.; J. Taibah Univ. SCI. 2017, 11, 90.
[15] Khan, I.; Yamani, Z.H.; Qurashi, A.; Ultrason. Sonochem. 2017, 34, 484.
[16] Hou, L.; Zhou, X.; Kong, L.; Ma, Z.; Su, L.; Liu, Z.; Shao, G.; Nanomater. 2023, 13, 1192.
[17] Ray, P.K.; Mohanty, R.; Parida, K.; J. Energy Storage. 2023, 72, 108335.
[18] Xie, J.-J.; Liu, H.-W.; Appl. Math. Model. 2023, 119, 717.
[19] Hunter, B.M.; Hieringer, W.; Winkler, J.; Gray, H.; Müller, A.; Energy Environ. Sci. 2016, 6, 1734.
[20] Bhojaraj, M.; Rajamathi,; ACS. 2023, 10185.
[21] Qiu, Y.; Liu, Z.; Zhang, X.; Sun, A.; Liu, J.; Appl. Surf. Sci. 2022, 598, 153690.