Porous Covalent Triazine-Based Frameworks: Synthesis and Applications in Adsorption and Catalysis

Document Type : Review Article

Authors

Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

10.22049/cic.2024.29487.1036

Abstract

In recent years, porous organic polymers (POPs) have received much attention due to their porous nature and high surface area, and have found wide applications in many fields. An important class of POPs are porous covalent triazine frameworks (CTFs).CTFs have several advantages including high thermal and chemical stability, rich nitrogen contents and tunable porosities. Their structure consists of light elements (C, N, H) and they consist of strong aromatic C=N linkage. These unique properties endow CTFs with great prospects in various applications such as separation and storage of gases, energy storage, adsorption of pollutants, photocatalysis and heterogeneous catalysis. A series of synthetic strategies have been developed, i.e., ionothermal synthesis, superacid-catalyzed method, phosphorus pentoxide- catalyzed method, amidine-aldehyde condensation method, Friedel–Crafts and Schiff-Base reaction methods. Our aim in this review is to take a short look at different synthetic methods of CTFs, and some of their applications.

Keywords


[1] Das, S.; Heasman, P.; Ben, T.; Qiu, S. Chem. Rev. 2017, 1515.
[2] Morris, R. E.; Wheatley, P. S. Angew. Chem. Int. Ed. 2008, 47, 4966.
[3] Bügel, S.; Hähnel, M.; Kunde, T.; de Sousa Amadeu, N.; Sun, Y.; Spieß, A.; Janiak, C. J. Mater. 2022, 15, 2807.
[4] Erdosy, D. P.; Wenny, M. B.; Cho, J.; DelRe, C.; Walter, M. V.; Jiménez-Ángeles, F.; Mason, J. A. Nature. 2022, 608, 712-718.
[5] Bügel, S.; Hähnel, M.; Kunde, T.; de Sousa Amadeu, N.; Sun, Y.; Spieß, A.; Janiak, C. Mater. 2022, 15, 2807.
[6] Yang, J.; Qiu, H.; Huang, L.; Meng, S.; Yang, Y. Chem Plus Chem. 2023, 88, e202300292.
[7] Sayari, A.; Hamoudi, S.; Yang, Y. Chem. Mater.  2005, 17, 212.
[8] Zhang, J.; Chen, J.; Peng, S.; Peng, S.; Zhang, Z.; Tong, Y.; Yan, X. P. Chem. Soc. Rev. 2019, 48, 2566.
[9] Zhao, X. S. J. Mater. Chem. 2006, 16, 623.
[10] Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Sci. 2005, 310, 1166-1170.
[11] Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S. K.; Yaghi, O. M.  Chem. Mater. 2011, 23, 4094-4097.
 [12] Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Adv Mater.  2010, 22, 2202-2205.
 [13] Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009 131, 4570-4571.
[14] Liu, M.; Guo, L.; Jin, S.; Tan, B. J. Mater. Chem. A 2019, 7, 5153– 5172.
[15] Kuhn, P.; Antonietti, M.; Thomas, A. Porous Angew. Chem., Int. Ed. Engl., 2008, 47, 3450-3453.
 [16] Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H. ACS Appl. Mater. Interfaces. 2017, 9, 37731-37738.
[17] Gao, G.; Jia, Y.; Gao, H.; Shi, W.; Yu, J.; Yang, Z.; Zhao, Y. ACS Appl Mater Interfaces.  2021, 13, 50258-50269.
[18] Mahato, M.; Nam, S.; Lee, M. J.; Koratkar, N.; Oh, I. K. Small. 2023, 2301847.
[19] Bhanja, P.; Bhunia, K.; Das, S. K.; Pradhan, D.; Kimura, R.; Hijikata, Y.; Bhaumik, A. ChemSusChem. 2017, 10, 921-929.
[20] Lin, K. Y.; EL-Mahdy, A. F. Mater. Chem. Phys. 2022, 281, 125850
[21] Chan‐Thaw, C. E.; Villa, A.; Veith, G. M.; Kailasam, K.; Adamczyk, L. A., Unocic, R. R.; Thomas. Chem. Asian J. 2012, 7, 387-393.
[22] Iemhoff, A.; Vennewald, M.; Palkovits, R. Angew. Chem., Int. Ed. Engl. 2023 62, e202212015.
[23] Qian, Z.; Wang, Z. J.; Zhang, K. A. Chem. Mater. 2021, 33, 1909-1926.
[24] Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; McKeown, N. B. Sci. 2013, 339, 303-307.
[25] Lan, Z. A.; Wu, M., Fang, Z.; Zhang, Y.; Chen, X.; Zhang, G.; Wang, X. Angew. Chem., Int. Ed. Engl. 2022, 61, e202201482.
[26] Liu, J.; Zong, E.; Fu, H.; Zheng, S.; Xu, Z.; Zhu, D. J. Colloid Interface Sci. 2012, 372, 99-107.
[27] Rabbani, M. G.; El-Kaderi, H. M. Chem. Mater. 2011, 23, 1650-1653.
[28] Zheng, B., Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc.  2011, 133, 748-751.
[29] Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Adv Mater. 2010, 22, 2202-2205.
[30] Katekomol, P.; Roeser, J.; Bojdys, M., Weber, J.; Thomas, A. Chem. Mater, 2013, 25, 1542-1548.
[31] Bavykina, A. V.; Olivos-Suarez, A. I., Osadchii, D.; Valecha, R., Franz, R.; Makkee, M.; Gascon, J. ACS Appl. Mater. Interfaces. 2017, 31, 26060-26065.
[32] Farrokhi, H., Bagheri, M. J. Polym. Res. 2023, 30, 45.
[33] Mukherjee, S.; Das, M.; Manna, A., Krishna, R.; Das, S. J. Mater. Chem. A. 2019, 7, 1055-1068.
[34] Jena, H. S.; Krishnaraj, C.; Schmidt, J.; Leus, K.; Van Hecke, K.; Van Der Voort, P. Chem. Eur. J. 2020, 26, 1548-1557.
[35] Park, K.; Lee, K.; Kim, H.; Ganesan, V.; Cho, K.; Jeong, S. K.; Yoon, S. J. Mater. Chem. A. 2017, 5, 8576-8582.
[36] a) Kuhn, P.; Forget, A.; Su, D.;Thomas, A., & Antonietti, M. J. Am. Chem. Soc. 2008, 130, 13333-13337. b) Osadchii, D. Y.; Olivos-Suarez, A. I.; Bavykina, A. V.; Gascon, J. Langmuir 2017, 33, 14278-14285.
[37] Ren, S.; Bojdys, M. J.; Dawson, R., Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv Mater. 2012, 24, 2357-2361.
[38] Zhu, X.; Tian, C.; Mahurin, S. M.; Chai, S. H., Wang, C., Brown, S.; & Dai, S. J. Am. Chem. Soc. 2012, 134, 25, 10478-10484.
[39] Yang, Z.; Chen, H.; Wang, S.; Guo, W.; Wang, T.; Suo, X.; & Dai, S. J. Am. Chem. Soc. 2020 .142, 6856-6860.
[40] Yu, S. Y.; Mahmood, J.; Noh, H. J.; Seo, J. M.; Jung, S. M.; Shin, S. H.; Baek, J. B. 2018. Angew. Chem., Int. Ed. Engl. 2018, 57, 8438-8442.
[41] Wang, K.; Yang, L. M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Cooper, A. Angew. Chem., Int. Ed. Engl. 2017, 56, 14149-14153.
[42] Lim, H.; Cha, M. C.; Chang, J. Y. Macromol Chem Phys. 2012, 213, 1385-1390.
[43] Xiong, S.; Fu, X.; Xiang, L.; Yu, G.; Guan, J.; Wang, Z.; Pan, C. Polym. Chem. 2014, 5, 3424-3431.
[44] Schwab, M. G.; Fassbender, B.; Spiess, H. W.; Thomas, A.; Feng, X.; Mullen, K. J. Am. Chem. Soc. 2009, 131, 7216-7217.
[45] Song, W. C.; Xu, X. K.; Chen, Q.; Zhuang, Z. Z.; Bu, X. H. Polym. Chem. 2013, 4, 4690-4696.
[46] Liu, Q.; Tang, Z.; Wu, M.; Liao, B., Zhou, H.; Ou, B.; Li, X. RSC Adv. 2015, 5, 8933-8937.
[47] Chakraborty, A.; Sarkar, S.; Kyarikwal, R.; Nag, P.; Vennapusa, S. R.; Mukhopadhyay, S. ACS Appl. Polym. Mater. 2022, 4, 8118-8126.
[48] Kumar, S.; Kumari, K.; Singh, S. K.; Dholakiya, B. Z.; Jangir, R. New J Chem. 2023, 47, 13676-13686.
[49] Ghanbari, J.; Mobinikhaledi, A. Sci. Rep. 2023, 13, 12962.
[50] Aslam, A. A.; Irshad, A.; Nazir, M. S.; & Atif, M. J. Clean. Prod. 2023, 400, 136737.
 [51] Bhunia, A.; Boldog, I.; Möller, A.; Janiak, C. J. Mater. Chem. 2013, 1, 14990-14999  
[52] Zhao, Y.; Yao, K. X.; Teng, B.; Zhang, T.; Han, Y. Energy Environ Sci. 2013, 3684-3692.
[53] Xu, G.; Zhang, S.; Xie, W.; Wang, L.; Xue, X.; Qiao, Y.; Su, Z. J. Polym. Res. 2022, 29, 153.
[54] Rangaraj, V. M.; Reddy, K. S. K.; Karanikolos, G. N. J. Chem. Eng. 2022, 429, 132160.
[55] Lin, K. Y.; EL-Mahdy, A. F.  Mater. Chem. Phys. 2022, 281, 125850.
[56] Park, K.; Lee, K.; Kim, H.; Ganesan, V.; Cho, K.; Jeong, S. K.; Yoon, S. Mater. Chem. 2017, 5, 8576-8582.
[57] Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem. 2012, 5, 1793-1799.
[58] Liu, T. T.; Xu, R.; Yi, J. D.; Liang, J.; Wang, X. S.; Shi, P. C.; Cao, R. ChemCatChem. 2018, 10, 2036-2040.
[59] Liu, F.; Duan, X.; Liu, M.; Du, J.; Ma, J.; & Liu, F. Ind. amp; Eng. Chem. Res. 2021, 60, 15027-15036.
[60] Yu, W.; Gu, S.; Fu, Y.; Xiong, S.; Pan, C.; Liu, Y.; & Yu, G. J. Catal. 2018, 362, 1-9.
[61] Zhao, Y.; Huang, H.; Zhu, H.; & Zhong, C. Microporous Mesoporous Mater. 2022, 329, 111526.
[62] M. B. Ansari, M. N. Parvin and S.-E. Park, Res. Chem. Intermed. 2013, 40, 67-75.
[63] Huang, W.; Ma, B. C.; Lu, H.; Li, R.; Wang, L.; Landfester, K.; & Zhang, K. A. ACS Catal. 2017, 7, 5438-5442.
[64] Sun, R.; Tan, B. Chem. Res. Chin. 2022, 38, 310-324.
[65] Iemhoff, A.; Vennewald, M.; Palkovits, R. Angew. Chem., Int. Ed. Engl. 2023. 62, e202212015.