One- pot facile synthesis of nitrogen doped graphene quantum dots based on N',2-dihydroxyethanimidamide and citric acid

Document Type : Original Article

Authors

1 Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Educational Sciences Department, Faculty of Science, Farhangian University, Tabriz, Iran

Abstract

Graphene quantum dots (GQDs) are tiny segments of graphene whose electron mobility is confined in all three dimensions. Graphene is a 0-bandgap semiconductor possessing an infinite exciton Bohr diameter. Therefore, quantum confinement is evident in all graphene fragments. The GQDs are usually under 20 nm in dimensions. We report a facile hydrothermal method for synthesis of graphene quantum dots contains nitrogen atoms (N-GQDs). This study shows interaction between citric acid (CA) and N',2-dihydroxyethanimidamide (DHAA) in which N-doped graphene quantum dots were synthesized. Due to use of DHAA that has two active sites, synthesized N-GQDs have special morphology, fluorescence and viscosity. Compared with other nitrogen compounds that is necessary for N-GQDs synthesis, DHAA is much more suitable due to low toxicity and stability. Synthesized N-GQDs were identified by FT-IR, XRD, TGA and fluorescence.

Keywords


  1. Zhang, Z.; Zhang, J.; Chen, N.; Qu, L.; Energy Environ. Sci.. 2012, 5, 8869-90.

2.Shen, J.; Zhu, Y.; Yang, X.; Li, C.; Chem.com. 2012, 48, 3686-99.

  1. Liu, WW.; Feng, YQ,; Yan, XB.; Chen, JT.; Xue, QJ.; Adv. Funct. Mater. 2013, 234164.
  2. Aillon, KL.; Xie, Y.; El-Gendy, N.; Berkland. CJ.; Forrest, ML.; Adv. Drug Deliv. Rev. 2009, 61, 457-66.
  3. Wang, K.; Gao, Z.; Gao, G.; Wo, Y.; Nanoscale Res. Lett. 2013, 8, 122.
  4. Zhao, Q-L.; Zhang, Z-L.; Huang, B-H.; Peng, J.; Zhang, M.; Pang, D-W.; Chem.Com. 2008, 41, 5116-8.
  5. Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B.; J. Am. Chem. Soc. 2009, 131, 4564-5.
  6. Liu, H.; Wang, Q.; Shen, G.; Zhang, C.; Li, C.; Ji, W.; Nanoscale Res. Lett. 2014, 9, 397.
  7. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Angew. Chem. 2013, 125, 4045-9.
  8. Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y.; Biosensors and Bioelectronics. 2014, 60, 292-8.
  9. Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, CE.; Xu, J.; Fernando, KS.; J. Am. Chem. Soc. 2011, 133, 4754-7.
  10. Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L.; Angew. Chem 2012, 51, 12215-8.
  11. Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J.; Chem. Eur. J. 2014, 20, 2254-63.
  12. Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Chem. Mater. 2014, 26, 3104-12.
  13. Gude, V.; Beilstein J. Nanotechnol. 2014, 5, 1513.
  14. Jiang, C.; Wu, H.; Song, X.; Ma, X.; Wang, J.; Tan, M.; Talanta. 2014, 127, 68-74.
  15. Thakur, M.; Pandey ,S.; Mewada, A.; Patil, V.; Khade, M.; Goshi, E.; J. Drug Deliv. 2014.
  16. Sun, Y-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, KS.; Pathak, P.; J. Am. Chem. Soc.. 2006, 24, 7756-7.
  17. Peng, H.; Travas-Sejdic, J.; Chem. Mater. 2009;21, 5563-5.
  18. Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z.; New J Chem. 2012, 36, 861-4.
  19. Zhang, R.; Chen, W.; Biosensors and Bioelectronics. 2014, 55, 83-90.
  20. Guo, Y.; Wang, Z.; Shao, H.; Jiang, X.; Carbon. 2013, 52, 583-9.
  21. Fan, R-J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A-H.; Carbon. 2014, 71, 87-93.
  22. Zhang, Y-Q.; Ma, D-K.; Zhuang, Y.; Zhang, X.; Chen, W.; Hong, L-L.; J. Mater. Chem. 2012, 22, 16714-8.
  23. Liu, Y.; Xiao, N.; Gong, N.; Wang, H.; Shi, X.; Gu, W.; Carbon. 2014,68, 258-64.
  24. Shen, J.; Zhu, Y.; Yang, X.; Zong, J.; Zhang, J.; Li, C.; New. J. Chem. 2012, 36, 97-101.
  25. Pan, D.; Zhang, J.; Li, Z.; Wu, M.; Adv. mater. 2010, 22, 734-8.
  26. Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C.; Chem. Com. 2011, 47, 2580-2.
  27. Yan, X.; Cui, X.; Li, B.; Li, L-s.; Nano let. 2010, 5, 869-73.
  28. Liu, R.; Wu, D.; Feng, X.; Mùˆllen, K.; Journal of the American Chemical Society. 2011, 133, 15221-3.
  29. Liu, H.; Liu, Y.; Zhu, D.; J. Mater. Chem. 2011, 21, 3335-45.
  30. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z.; S Acs Nano. 2009, 3,1952-8.
  31. Li, Q.; Zhang, S.; Dai, L.; Li, L-s.; J. Am. Chem. Soc. 2012, 134, 18932-5.
  32. Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; J. Mater. Chem. B. 2013, 1, 39-42.
  33. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P.; Appl. Phys. Lett. 2002, 80, 2773-5.
  34. Gong, K.; Du ,F.; Xia, Z.; Durstock, M.; Dai, L.; Sci. 2009, 323760-4.
  35. Wang, S.; Wang, X.; Jiang, SP.; J. A. Sci. 2008, 24, 10505-12.
  36. Wang, S.; Yang, F.; Jiang, SP.; Chen, S.; Wang, X.; Electrochem. Com. 2010, 12, 1646-9.
  37. Zhou, C.; Kong, J.; Yenilmez, E.; Dai, H.; Sci. 2000, 290, 1552-5.
  38. Wang, Y.; Shao, Y.; Matson, DW.; Li, J.; Lin, Y.; ACS nano. 2010, 4, 1790-8.
  39. Dong, Y.; Chen, C.; Zheng, X..; Gao, L.; Cui, Z.; Yang, H.; J. Mater. Chem. 2012, 22, 8764-6.
  40. Stankovich, S.; Dikin, DA.; Piner, RD.; Kohlhaas, KA.; Kleinhammes, A.; Jia ,Y.; Carbon. 2007, 45, 15, 1558-65.
  41. Park, S.; An, J.; Piner, RD.; Jung, I.; Yang, D.; Velamakanni, A.; Chem. mater. 2008, 20, 6592-4.
  42. Van Tam, T.; Trung, NB.; Kim, HR.; Chung, JS.; Choi, WM;. Sensors and Actuators B: Chemical. 2014, 202, 568-73.
  43. Shang, J.; Ma, L.; Li, J.; Ai, W, Yu. T.; Gurzadyan, GG.; Sci. Rep. 2012, 2, 792.
  44. Sun, W.; Du, Y.; Wang, Y.; J. Lumin. 2010, 130, 1463-9.
  45. Du, F.; Zeng, F.; Ming, Y.; Wu, S.; Mikrochim. Acta. 2013, 180, 453-60.