One- pot facile synthesis of nitrogen doped graphene quantum dots based on N',2-dihydroxyethanimidamide and citric acid

Document Type : Original Article

Authors

1 Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Educational Sciences Department, Faculty of Science, Farhangian University, Tabriz, Iran

10.22049/cic.2024.29525.1037

Abstract

Graphene quantum dots (GQDs) are tiny segments of graphene whose electron mobility is confined in all three dimensions. Graphene is a 0-bandgap semiconductor possessing an infinite exciton Bohr diameter. Therefore, quantum confinement is evident in all graphene fragments. The GQDs are usually under 20 nm in dimensions. We report a facile hydrothermal method for synthesis of graphene quantum dots contains nitrogen atoms (N-GQDs). This study shows interaction between citric acid (CA) and N',2-dihydroxyethanimidamide (DHAA) in which N-doped graphene quantum dots were synthesized. Due to use of DHAA that has two active sites, synthesized N-GQDs have special morphology, fluorescence and viscosity. Compared with other nitrogen compounds that is necessary for N-GQDs synthesis, DHAA is much more suitable due to low toxicity and stability. Synthesized N-GQDs were identified by FT-IR, XRD, TGA and fluorescence.

Keywords


  1. Zhang, Z.; Zhang, J.; Chen, N.; Qu, L.; Energy Environ. Sci.. 2012, 5, 8869-90.

2.Shen, J.; Zhu, Y.; Yang, X.; Li, C.; Chem.com. 2012, 48, 3686-99.

  1. Liu, WW.; Feng, YQ,; Yan, XB.; Chen, JT.; Xue, QJ.; Adv. Funct. Mater. 2013, 234164.
  2. Aillon, KL.; Xie, Y.; El-Gendy, N.; Berkland. CJ.; Forrest, ML.; Adv. Drug Deliv. Rev. 2009, 61, 457-66.
  3. Wang, K.; Gao, Z.; Gao, G.; Wo, Y.; Nanoscale Res. Lett. 2013, 8, 122.
  4. Zhao, Q-L.; Zhang, Z-L.; Huang, B-H.; Peng, J.; Zhang, M.; Pang, D-W.; Chem.Com. 2008, 41, 5116-8.
  5. Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B.; J. Am. Chem. Soc. 2009, 131, 4564-5.
  6. Liu, H.; Wang, Q.; Shen, G.; Zhang, C.; Li, C.; Ji, W.; Nanoscale Res. Lett. 2014, 9, 397.
  7. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Angew. Chem. 2013, 125, 4045-9.
  8. Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y.; Biosensors and Bioelectronics. 2014, 60, 292-8.
  9. Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, CE.; Xu, J.; Fernando, KS.; J. Am. Chem. Soc. 2011, 133, 4754-7.
  10. Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L.; Angew. Chem 2012, 51, 12215-8.
  11. Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J.; Chem. Eur. J. 2014, 20, 2254-63.
  12. Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Chem. Mater. 2014, 26, 3104-12.
  13. Gude, V.; Beilstein J. Nanotechnol. 2014, 5, 1513.
  14. Jiang, C.; Wu, H.; Song, X.; Ma, X.; Wang, J.; Tan, M.; Talanta. 2014, 127, 68-74.
  15. Thakur, M.; Pandey ,S.; Mewada, A.; Patil, V.; Khade, M.; Goshi, E.; J. Drug Deliv. 2014.
  16. Sun, Y-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, KS.; Pathak, P.; J. Am. Chem. Soc.. 2006, 24, 7756-7.
  17. Peng, H.; Travas-Sejdic, J.; Chem. Mater. 2009;21, 5563-5.
  18. Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z.; New J Chem. 2012, 36, 861-4.
  19. Zhang, R.; Chen, W.; Biosensors and Bioelectronics. 2014, 55, 83-90.
  20. Guo, Y.; Wang, Z.; Shao, H.; Jiang, X.; Carbon. 2013, 52, 583-9.
  21. Fan, R-J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A-H.; Carbon. 2014, 71, 87-93.
  22. Zhang, Y-Q.; Ma, D-K.; Zhuang, Y.; Zhang, X.; Chen, W.; Hong, L-L.; J. Mater. Chem. 2012, 22, 16714-8.
  23. Liu, Y.; Xiao, N.; Gong, N.; Wang, H.; Shi, X.; Gu, W.; Carbon. 2014,68, 258-64.
  24. Shen, J.; Zhu, Y.; Yang, X.; Zong, J.; Zhang, J.; Li, C.; New. J. Chem. 2012, 36, 97-101.
  25. Pan, D.; Zhang, J.; Li, Z.; Wu, M.; Adv. mater. 2010, 22, 734-8.
  26. Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C.; Chem. Com. 2011, 47, 2580-2.
  27. Yan, X.; Cui, X.; Li, B.; Li, L-s.; Nano let. 2010, 5, 869-73.
  28. Liu, R.; Wu, D.; Feng, X.; Mùˆllen, K.; Journal of the American Chemical Society. 2011, 133, 15221-3.
  29. Liu, H.; Liu, Y.; Zhu, D.; J. Mater. Chem. 2011, 21, 3335-45.
  30. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z.; S Acs Nano. 2009, 3,1952-8.
  31. Li, Q.; Zhang, S.; Dai, L.; Li, L-s.; J. Am. Chem. Soc. 2012, 134, 18932-5.
  32. Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; J. Mater. Chem. B. 2013, 1, 39-42.
  33. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P.; Appl. Phys. Lett. 2002, 80, 2773-5.
  34. Gong, K.; Du ,F.; Xia, Z.; Durstock, M.; Dai, L.; Sci. 2009, 323760-4.
  35. Wang, S.; Wang, X.; Jiang, SP.; J. A. Sci. 2008, 24, 10505-12.
  36. Wang, S.; Yang, F.; Jiang, SP.; Chen, S.; Wang, X.; Electrochem. Com. 2010, 12, 1646-9.
  37. Zhou, C.; Kong, J.; Yenilmez, E.; Dai, H.; Sci. 2000, 290, 1552-5.
  38. Wang, Y.; Shao, Y.; Matson, DW.; Li, J.; Lin, Y.; ACS nano. 2010, 4, 1790-8.
  39. Dong, Y.; Chen, C.; Zheng, X..; Gao, L.; Cui, Z.; Yang, H.; J. Mater. Chem. 2012, 22, 8764-6.
  40. Stankovich, S.; Dikin, DA.; Piner, RD.; Kohlhaas, KA.; Kleinhammes, A.; Jia ,Y.; Carbon. 2007, 45, 15, 1558-65.
  41. Park, S.; An, J.; Piner, RD.; Jung, I.; Yang, D.; Velamakanni, A.; Chem. mater. 2008, 20, 6592-4.
  42. Van Tam, T.; Trung, NB.; Kim, HR.; Chung, JS.; Choi, WM;. Sensors and Actuators B: Chemical. 2014, 202, 568-73.
  43. Shang, J.; Ma, L.; Li, J.; Ai, W, Yu. T.; Gurzadyan, GG.; Sci. Rep. 2012, 2, 792.
  44. Sun, W.; Du, Y.; Wang, Y.; J. Lumin. 2010, 130, 1463-9.
  45. Du, F.; Zeng, F.; Ming, Y.; Wu, S.; Mikrochim. Acta. 2013, 180, 453-60.