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Abstract

Graphene guantum dots (GQDs) are tiny segments of graphene whose electron mobility is confined
in all three dimensions. Graphene is a 0-bandgap semiconductor possessing an infinite exciton Bohr
diameter. Therefore, quantum confinement is evident in all graphene fragments. The GQDs are
usually under 20 nm in dimensions. We report a facile hydrothermal method for synthesis of graphene
quantum dots contains nitrogen atoms (N-GQDs). This study shows interaction between citric acid
(CA) and N',2-dihydroxyethanimidamide (DHAA) in which N-doped graphene quantum dots were
synthesized. Due to use of DHAA that has two active sites, synthesized N-GQDs have special
morphology, fluorescence and viscosity. Compared with other nitrogen compounds that is necessary
for N-GQDs synthesis, DHAA is much more suitable due to low toxicity and stability. Synthesized
N-GQDs were identified by FT-IR, XRD, TGA and fluorescence.
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Introduction

graphene quantum dots (GQDs) that
consist of nanometer-scaled graphene
particles with sp?-sp? carbon bonds are
expected to show specific properties like
size dependent general quantum dots
(QDs) [1, 2] or chemically modified
quantum dots with sp?-sp? carbon bonds.
In contrast to graphene, most
applications of GQDs have been focused
on the photoluminescence (PL)-related
fields since GQDs show a PL. Recent
studies clear that, additional properties
of GQDs such as high transparency and
high surface area have been discussed

for energy and display applications [3].

Carbon quantum dots (C-QDs), have
received many attentions for exceptional
advantages such as low toxicity [4, 5],
high chemical stability [6], excellent
biocompatibility [7-9], high-
fluorescence [10]. Considering these
unique physical-chemical
characteristics, C-QDs have been
applied broadly in fields of catalysis
[11], printing ink [12], biological
sensors [13-15], bioimaging [16] and
drug delivery [17]. Since 2006, Sun et al.
found a new fluorescent nanoparticle

named as carbon dots, many approaches

have been found to prepare C-QDs [18].
Up to now, several methods for
obtaining carbon-based materials have
been developed, such as chemical
oxidation method [19], ultrasonic
method [20], hydrothermal synthesis [9,
21-23], solvothermal method [24],
microwave method [25] and laser
ablation method [18].

There are two main strategies for
synthesizing GQDs, i.e., top-down and
bottom-up  methods.  The  first
approaches involve the exfoliation of
graphite into graphene sheets, followed
by cutting of graphene sheets into
GQDs. Therefore, the top- down method
is limited by low product yield and
rough conditions because of the use of a
toxic organic solvent and strong
acid/oxidant [26-28]. However, the
bottom-up approaches is based on the
construction of GQD from small organic
precursor molecules through catalytic or
thermal treatment, resulting in the
environmentally-friendly production of
large scale GQDs with uniform size of
distribution and morphology [29, 30].

N-doped into graphene was highly
effective in modulating its band gap to

achieve new properties for device



applications [31, 32]. Due to the
considerable quantum confinement and
edge effects of GQDs, direct substitution
with nitrogen in GQDs lattice can
drastically modulate the chemical and
electronic properties and offer more
active sites, thus leading to unexpected
phenomena which could be extensively
applied in various fields. Recently, N-
doped GQDs (N-GQDs) have been
synthesized through hydrothermal or
electrochemical methods which are
based on slicing graphene oxide (GO)
and its reduction. However, synthesis of
GO typically takes several days and
requires lots of strong chemical acid and

oxidant in a series of chemical
treatments of the bulk graphite powder
[33, 34].

Chemical doping is one of the important
and basic factors in improving the
properties of graphene, which has been
proved effective in the doping of carbon
nanotubes (CNTs) and has extremely
broadened their applications [35-39].
When a nitrogen atom is doped into
graphene, three common bonding
configurations within the carbon lattice,
including quaternary N (or graphitic N),
pyridinic N, and pyrrolic N are obtained

(Figure 1) [40].
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Figure 1: Three common bonding configuration nitrogen-doped graphene

Experimental

Materials
Citric acid and N',2-
dihydroxyethanimidamide were

purchased from Sigma Aldrich by purity
of 99% and NaOH was purchased from

Beijing Chemical Works and used
directly without further purification.
Synthesis of N-GQDs

The N-GQDs were synthesized by
carbonization of citric acid with N',2-
dihydroxyethanimidamide through

hydrothermal treatment. In brief, CA



and DHAA with different molar ratio
(1:0.3, 1:1, 1:1.5, 1:3) were transferred
to reaction vessel and heated at 170°C
using a heating mantle for 3h under open
system. Subsequently, the color of the
liquid was changed from colorless to
pale yellow, and then orange in 1h,
implying the formation of GQDs. Then
cooled down to room temperature. After
cooling, a suspension of N-GQDs were
obtained. If the heating was kept on, the
orange liquid would finally turn to black
solid in about more than 3h, exits from
QDs state.

Characterization

Powder X-ray diffraction (XRD)
patterns of the samples were obtained
with  a Bruker D8  Advance
diffractometer using a Cu Ka source (A=
0.154056 nm). The FT-IR spectra were
recorded on a Shimadzu FT-IR-408
spectrophotometer. Fluorescence
spectra and intensity measurements
were carried out using an FP-6200

spectrofluorometer (JASCO

Corporation, Tokyo, Japan). The
Thermogravimetric analysis (TGA) of
the samples was measured using Mettler
Toledo instrument under N2 with a

heating rate of 10 °C min™,
Result and Discussion

Effectiveness of the N atoms doping of
GQDs was evaluated with FT-IR
spectra, XRD, TGA and fluorescence.
FT-IR analysis

The Fourier transform infrared (FT-IR)
spectra were measured to verify the
functional groups. Figure 2 shows the
FT-IR spectrums of N-GQDs with
various DHAA contents. The spectrum
of products was the same, showing a
strong OH peak at 3443 cm™. The peaks
related to N-C=0 (1633 cm™) and C=C-
H (1361 cm™) are also clearly observed.
Bending peak at 666 cm™ exhibits C-H,
N-H. These results confirm the
successful introduction of N in N-GQDs
and are also consistent with the
corresponding  FT-IR  spectroscopy

results.
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Figure 2: FT-IR spectrum of N-QGDs

XRD analysis

The XRD pattern shown in Figure 3
contains a broad peak centered at 26=
21.88° corresponding to an interlayer
spacing of the N-GQDs. Such a low

diffraction degree suggests a large
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interlayer spacing, which may be due to
the high oxygen content of these N-
GQDs, as pointed out by Dong et al [41].
In their study, the interlayer spacing of
GQDs increases with the increase in

oxygen content.
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Figure 3: XRD patterns of N-GQDs

TGA

Thermogravimetric  analysis (TGA)
graphs (Figure. 4) show weight profiles
of GQDs variation of temperature

(heating rate, 1/min) under N2 flow.

Figure 4a, b (1: 0.3, 1: 1) Weight loss
(2.6 wt%) of the GQD up to 100 C could
be primarily due to evaporation of water
molecules held in the samples [42, 43].
The significant weight loss of 29.59% at
190 °C, presumably due to the loss of



those oxygen-containing groups before
the complete oxidative decomposition of
the GQD over 268-700 °C. Figure 4c (1:
1.5) Weight loss (3.1 wt%) of the GQD
up to 100 C could be primarily due to
evaporation of water molecules held in
the samples.55-56. The significant
weight loss of 22.79% at 190 °C,
presumably due to the loss of those
oxygen-containing groups before the

complete oxidative decomposition of the

mg
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GQD over 258-700 °C. Figure 4d (1: 3)
Weight loss (5.4 wt%) of the GQD up to
100 C could be primarily due to
evaporation of water molecules held in
the samples.55-56. The significant
weight loss of 25.15% at 190 °C,
presumably due to the loss of those
oxygen-containing groups before the
complete oxidative decomposition of the
GQD over 249-700 °C.
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Figure 4: Thermogravimetric spectrum of GQDs

Photoluminescence analysis

The strong photoluminescence (Fig. 5a)
at 383 nm in GQDs is resulted from free
zigzag sites with a carbene-like triplet
ground state [27]. The initial
DHAA in the

hydrothermal treatment can also affect

concentration of

the photoluminescence. By changing the
amount of DHAA from ratioof 1: 1 to 1
:3, the intensity of N-GQDs showed
drastic decrease, as shown in Fig. 5,

indicating the tunable
photoluminescence by the control of N-
atom ratio. For a detailed PL study of N-
GQDs, we carried out PL measurements
by using different excitation
wavelengths, as shown in Fig. 5. As the
excitation wavelength is changed from
200 to 500 nm, each ratio of N-GQDs
showed different peaks in three
wavelengths (Fig. 5b-¢e) in which every
four ratio exhibited peak at 383 nm, that

ratio of 1: 1 has the most intensity.
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Figure 5: Fluorescence diagram of N-GQDs

Conclusion

In this study, CA and DHAA with
different ratio were reacted together.
Considering that DHAA has two active

sites, including N and OH, can couple by

9

CA from two positions, this coupling
can be occurred as nucleophilic attack of
N and water removal by OH groups of
two molecules. This process cause’s

appearance of N-H groups in N-GQDs
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which effects on fluorescence and
morphology of N-GQDs. Furthermore,
up to now most of GQDs are synthesized
with CA and ammonia [44]. Because
ammonia is a volatile compound during
working with it, vigorous and closed
system is needed. Despite ammonia,
DHAA is a stable material which doesn’t

requires any isolated system.

The fluorescence emission spectra of
GQDs were primarily investigated under
excitation wavelengths. From the
fluorescence spectra (Fig. 5), GQDs
have  wonderful emission under
excitation wavelength from 300 nm to
400 nm that was similar to previous
report.(9) This phenomenon is common
and contributed to the surface state
affecting the band gap of GQDs. The
surface state is analogous to a molecular
state whereas the size effect is a result of
quantum dimensions, both of which
contribute to the complexity of the
excited states of GQDs [45].
Particularly, the 52% of quantum yield
of the GQDs was calculated at 330 nm
optimal excitation according to the
above comparative equation. This result
is higher when compared with previous
report [46, 47].
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According to above paragraph our
products are quantum dot sized. In
contrast to other proportion, 1: 1 ratio
has the best florescence effect (280 a.u.).
Results showed that florescence effect
decreased by increase in molar ratio of
DHAA which shows a distinct increase
N-GQDs size.

Compared with other proportions of N-
QGDs, X-ray diffractogram of 1: 1 ratio
has the highest intensity (419 a.u.).
Increase in molar ratio of DHAA cause’s
decrease in XRD intensity. Also, by
increasing ratio of DHAA, viscosity of
N-GQDs decreased, too. So that the 1: 3
proportion has great fluidity. Color of N-
GQDs differ from light yellow to dark
brown. Darkening procedure is based on
increase in DHAA molar ratio (Figure.
6).



Figure 6: Differing color of N-GQDs
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